Hi ,欢迎来到金号角网 专业金融需求撮合平台,让金融需求找到更优质的服务商
免费注册 关注我们
金号角商讯
联系我们
新闻
新闻 产品 百科
发布需求
TOP
当前位置:金号角网> 金融学院> 金融知识 > 金融 > 统计> 高斯马尔科夫定理

恭喜湖南/长沙市【成功】需求金额200万元

恭喜湖南/长沙市【成功】需求金额200万元

恭喜湖南/长沙市【成功】需求金额300万元

恭喜湖南/长沙市【成功】需求金额200万元

恭喜湖南/长沙市【成功】需求金额1000万元

高斯马尔科夫定理

2020-07-30 编辑:网站编辑 有369人参与 发送到手机
微信浏览器扫一扫查看详情

  高斯-马尔科夫定理:在给定经典线性回归模型的假定下,最小二乘估计量,在无偏线性估计一类中,有最小方差,就是说,它们是BLUE(best linear unbiased estimator)
  在统计学中,高斯-马尔可夫定理陈述的是:在误差零均值,同方差,且互不相关的线性回归模型中,回归系数的最佳无偏线性估计(BLUE)就是最小方差估计。一般而言,任何回归系数的线性组合的最佳无偏线性估计就是它的最小方差估计。在这个线性回归模型中,误差既不需要假定正态分布,也不需要假定独立(但是需要不相关这个更弱的条件),还不需要假定同分布。
  具体而言,假设
  其中β0和β1是非随机但是未观测到的参数,xi 是观测到的变量,εi是随机误差,Yi是随机变量(x小写因为x不是随机变量,Y大写因为Y是随机变量)。
  高斯-马尔可夫定理的条件是:
  ,也就是“不相关性”。 βj的线性无偏估计指的是