passenger flow 客流是人们为了实现各类出行活动,借助各种交通工具形成的有目的流动。是一定时间内某一运输路线路段上一定方向的旅客流动,包含流量、流向和流时等要素。客流是合理规划运输网、配置客运站点设施、配备旅客运输工具和编制其运行作业计划的基本依据。它决定于各种运输方式沿线地区的工农业发展水平、城镇规模、文化和游览设施的分布、城乡居民的生活和文化水平,以及运输网的发达程度等因素。旅客乘车按其目的可分为生产性乘车和消费性乘车。前者如上下班、上下学和出差公务等乘车;后者如探亲、旅游、赴商店等乘车。 客流流量是旅客流动的数量。它在方向分布上是相对平衡的,因为旅客乘车一般是一往一返,由此产生客运上有往返车票。流量在时间分布上则很不均衡,但呈一定规律性。例如,节假日和旅游季节,消费性乘车显著增加;一日内的客流高峰在上下班和上下学的时间。 流向有上行与下行之别,一般以对应站点的位置来划分,如从重要城镇的站点往外行为上行,反向为下行。 客流调查是正确组织客运工作的依据。调查方法有直接观测法和调查法两种。直接观测法主要应用于公路运输,有三种:①目测法,由驾驶员或售票员目测客车满载程度;②高断面观测法,在客流集中的断面观察记录全日各时间的客流量;③驻站观测法,派员驻在车站观察记录上下车人数和乘车的来去方向。调查法有票根计算数法和调查表法,调查表可发给居民或随车发给乘客。
概述 这一思想与传统的“精密科学实验”相对立,在精密科学实验中,不是从承认误差不可避免出发的,而是致力于严格控制实验条件,以探求科学规律。田间试验的目的之一是寻求高产品种,而实验时的土地条件,如土质、排水等都不能严格控制,因此,“在严格控制的这样或那样条件下,品种A比品种B多收获若干斤”这类结论的实际意义就不大。在现场进行的工业实验,医学上的药物疗效实验等,也有类似情形。这表明,费希尔首创的实验设计原则,是针对工农业以及技术科学实验而设,而不是着眼于纯理论性的科学实验。实验设计的基本思想,是减少偶然性因素的影响,使实验数据有一个合适的数学模型,以便使用方差分析的方法对数据进行分析。费希尔于1923年与W.A.梅克齐合作发表了第一个实验设计的实例,1926年提出了实验设计的基本思想,1935年出版了他的名著《实验设计法》。其中提出了实验设计应遵循的三个原则:随机化,局部控制和重复。随机化的目的是使实验结果尽量避免受到主客观系统性因素的影响而呈现偏倚性;局部控制是用划分区组的方法,使区组内部条件尽可能一致;重复是为了降低随机误差的影响,以保证实验结果的重现性。费希尔最早提出的设计是随机区组法和拉丁方方法,两者都体现了上述原则。区组设计 指将u个处理安排在b个区组内作实验的一种实验设计法。所谓“处理”,是指诸如品种、工艺条件、种植方法等因素或措施。例如,要比较三个品种的优劣,则每个品种是一个处理,共有三个处理;如试验中涉及三个品种和两种种植方法,则每个品种与每种种植方法搭配构成一个处理,一共有3×2=6个处理。每个区组能容纳的处理个数称为该区组的大小,常以k表示。若区组i的大小kj小于υ,则区组i容纳不了全部的处理,称这一类设计为不完全区组设计;当kj均不小于υ时,区组可以容纳全部处理,称这一类设计为完全区组设计。 设要比较8个不同的品种A,B,C,D,E,F,G,H,看哪一个品种产量比较高。若一个区组是一长条地块,将这个地块分成8个小块种植全部8个品种,就得一个完全区组。如共有4个这种区组,则8个品种在每个区组内的安排,要用随机化的方法,将区组内的小块编置。图1就是一个具体的随机区组设计。随机区组设计如果有8个区组,每个区组可以容纳8个处理,那么不用随机化而用拉丁方进行设计,也能消除区组内各小块位置不同的影响。拉丁方 指将 υ个拉丁字母(每个字母代表一个处理)排成υ行υ列的方阵,使得各个字母在各行各列出现一次且只一次。称υ为拉丁方的阶数。若把拉丁方的行看作区组,是一块田;把列也看作区组,则是施肥量;那么拉丁方设计不但能消除行内各小块位置不同的影响,还能可以消除列内施肥量不同的影响。不完全区组设计 不完全区组设计在实际中常常遇到。一个区组可以是一块地、一辆汽车的四个轮胎或是车间的一个班组。当处理的数目太大时,要将全部处理安排在一个区组内是有困难的,因为区组的规模太大,就不能保证区组内的均匀性。由此,费希尔的合作者F.耶茨提出:将全部处理分成若干组,每组形成一个区组,使区组的大小缩小以保证区组内的均匀性。由于各个区组不包含全部处理,这种设计叫不完全区组设计。一般地,区组设计的狭义理解大都指不完全区组设计。不完全区组设计主要有两类 一类是平衡不完全区组(BIB)设计,一类是部分平衡不完全区组(PBIB)设计。设b)个区组大小相等,均为k,且k<υ,若能将υ个处理安排在b)个区组内,使每个处理出现的次数r(称为重复数)都相同,且每两个不同处理恰好在λ个区组内相遇(称λ为相遇数,则称这种安排为一个BIB设计。若λ并不全一样,而是随着处理对的不同而分成若干类,则称这种情况为一个PBIB设计。某些其他设计可以看成是 BIB设计或PBIB设计的一些特殊类型。 在BIB设计的参数υ,b),k,r和λ之间有如下的关系:。这些条件对 BIB设计的存在是必要的,但不是充分的。若υ=b),从而k=r,则称为对称BIB设计。若υ为偶数,则r-λ必须是一个完全平方数,否则,设计不存在。例如由于r-λ=12-4=8不是完全平方数,不存在υ=b)=34,k=r=12,λ=4的对称BIB设计,尽管这些参数满足上述必要条件。析因设计 区组设计主要用于农业的单因素实验,而析因设计既能用于农业实验,又能用于工业和其他技术科学实验,其目的是了解因素对某项指标的影响。例如,某项产品质量受原料、加工温度、加工时间等因素的影响。若原料有三个产地:上海、天津和锦州,把产地作为一个因素,则它们是这个因素的3个水平。若可选的加工温度是80℃、90℃、100℃和105℃,加工时间是5分钟和7分钟,则加工温度和加工时间这两个因素分别有4个水平和2个水平。问题是要了解在这些因素的不同水平组合之下,产品质量是否有显著性差异,并进一步确定这样一种水平组合,使产品质量最好。析因设计就是将全部因素的水平组合起来做实验,使得既能估计各个因素的主效应,又能估计因素之间的交互作用。所谓主效应,是指同一因素各水平之间的差异;交互作用是指一个因素的效应因另一因素的水平的改变而起的变化。前例中有3个因素,它们分别有3、4、2个水平,把它们组合起来共有3×4×2=24个水平组合,称为3×4×2型实验。若这3个因素分别以A、B、C表示,则从这个实验可以算出3个主效应A、B、C;3个二因素交互作用A×B、A×C、B×C以及一个三因素交互作用A×B×C。 主效应和交互作用统称效应,三因素或更多因素的交互作用统称为高阶交互作用。部分实施法 随着因素个数和因素水平的增多,水平组合的数目急剧增加,例如,10个3水平因素的实验总共有310=59049个水平组合,将近6万个实验要全部进行是不可能的。1946年,英国统计学家D.J.芬尼在保证能估计全部主效应和少数一部分低阶交互作用的前提下,提出了部分实施法,即只挑选一部分水平组合做实验,忽略一部分低阶和全部高阶交互作用。正交表是进行部分实施法最方便的一种工具。正交表 正交阵列的简称,是在拉丁方和正交拉丁方的基础上形成的。它的形式和广泛应用同日本统计学家田口玄一的工作分不开,他的工作得到国际上的重视,在中国也有相当影响。表是正交表的一个例子,这个表记作 L8(27), 表示有8行7列,而每行都包含2个水平,它可用来安排 2水平的实验。按正交表安排并进行分析的实验称为正交实验。正交表有下述两个性质:一是任一列的每个水平出现的次数相同;二是任意两列的各种不同水平组合出现的次数相同。在实际应用中,当把因素对应于正交表各列时,各行则表示应做实验的水平组合。由于上述两个性质,任一因素的效应可不受其他因素干扰。 正交表的构作同组合数学有密切的关系,因此,有关正交表的一些理论性问题的探讨是纯粹数学的课题。如下表5-3既为一个。 正交表
概念 年均增长率=每年的增长率之和/年数,年均增长率其实是为了计算方便,而认为设定的几年在一起计算的平均增长率。这里就排除了个别年的特别情况,在较详细的财务计算中应该是不用平均增长率的。公式 n年数据的增长率=【(本期/前n年)^{1/(n-1)}-1】×100%公式解释1、本期/前N年 应该是本年年末/前N年年末,其中,前N年年末是指不包括本年的倒数第N年年末,比如,计算2005年底4年资产增长率,计算期间应该是2005、2004、2003、2002四年,但前4年年末应该是2001年年末。括号计算的是N年的综合增长指数,并不是增长率。2、( )^1/(n-1) 是对括号内的N年资产总增长指数开方。也就是指数平均化。因为括号内的值包含了N年的累计增长,相当于复利计算。因此要开方平均化。应该注意的是,开方数应该是N,而不是N-1,除非前N年年末改为前N年年初数。总之开方数必须同括号内综合增长指数所对应的期间数相符。而具体如何定义公式可以随使用者的理解。3、[( )^1/(n-1)]-1 减去1是因为括号内计算的综合增长指数包含了基期的1,开方以后就是每年的平均增长指数,仍然大于1,而我们需要的是年均增长率,也就是只对增量部分实施考察,因此必须除去基期的1,因此要减去1.
简介 平均数是指在一组数据中所有数据之和再除以数据的个数。平均数是统计中的一个重要概念。小学数学里所讲的平均数一般是指算术平均数,也就是一组数据的和除以这组数据的个数所得的商。在统计中算术平均数常用于表示统计对象的一般水平,它是描述数据集中程度的一个统计量。既可以用它来反映一组数据的一般情况,也可以用它进行不同组数据的比较,以看出组与组之间的差别。用平均数表示一组数据的情况,有直观、简明的特点,所以在日常生活中经常用到,如平均速度、平均身高、平均产量、平均成绩等等。分类算术平均数 算术平均数是指在一组数据中所有数据之和再除以数据的个数。它是反映数据集中趋势的一项指标。 把n个数的总和除以n,所得的商叫做这n个数的平均数几何平均数 geometric mean n个观察值连乘积的n次方根就是几何平均数。根据资料的条件不同,几何平均数分为加权和不加权之分。 公式:x=(x1*x2*......*xn)^(1/n)调和平均数 harmonic mean 调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同。 在数学中调和平均数与算术平均数都是独立的自成体系的。计算结果两者不相同且前者恒小于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计加权调和平均数则与之不同,它是加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结果与加权算术平均数完全相等。 主要是用来解决在无法掌握总体单位数(频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据方法。 公式:n/(1/A1+1/A2+...+1/An)加权平均数 Weighted average 加权平均数是不同比重数据的平均数,加权平均数就是把原始数据按照合理的比例来计算,若 n个数中,x1出现f1次,x2出现f2次,…,xk出现fk次,那么(x1f1 + x2f2+ ... xkfk)÷ (f1 + f2 + ... + fk) 叫做x1,x2,…,xk的加权平均数。f1,f2,…,fk是x1,x2,…,xk的权。 公式:(x1f1 + x2f2+ ... xkfk)/n,其中f1 + f2 + ... + fk=n,f1,f2,…,fk叫做权。 说明:1)“权”的英文是weight,表示数据的重要程度。即数据的权能反映数据的相对“重要程度”。 2) 平均数是加权平均数的一种特殊情况,即各项的权相等时,加权平均数就是算术平均数。平方平均数 quadratic mean 平方平均数 公式:M=[(a^2+b^2+c^2+…n^2)/n] ^ (1/2)。指数平均数 指标概述 指数平均数[EXPMA],其构造原理是对股票收盘价进行算术平均,并根据计算结果来进行分析,用于判断价格未来走势得变动趋势。 EXPMA指标是一种趋向类指标,与平滑异同移动平均线[MACD]、平行线差指标[DMA]相比,EXPMA指标由于其计算公式中着重考虑了价格当天 [当期]行情得权重,因此在使用中可克服其他指标信号对于价格走势得滞后性。同时也在一定程度中消除了DMA指标在某些时候对于价格走势所产生得信号提前性,是一个非常有效得分析指标。 计算公式 1.EXPMA=[当日或当期收盘价-上日或上期EXPMA]/N 上日或上期EXPMA 2.首次上期EXPMA值为上期收盘价,N为天数。 3.可设置多条指标线,参数为12,50 应用法则 1.在多头趋势中,股价、短期EXPMA、长期EXPMA按以上顺序从高到低排列,是为多头特征;在空头趋势中,长期EXPMA、短期EXPMA、股价按以上顺序从高到低排列,是为空头特征。 2.当短期EXPMA由下而上穿越长期EXPMA时,为买入信号。此时短期EXPMA对价格走势将起到助涨得作用;当短期EXPMA由上而下穿越长期EXPMA时,为卖出信号,此时长期EXPMA对价格走势将起到助跌得作用。 3.多头市场中,股价将在短期EXPMA和长期EXPMA上方运行,此时这两条线将对股价走势形成支撑。在一个明显得多头趋势中,股价将沿短期 EXPMA移动,股价反复得最低点将位于长期EXPMA附近;相反地,股价在空头市场中将处于短期EXPMA和长期EXPMA下方运行,此时这两条线将对股价走势形成压力。在一个明显得空头趋势中,股价也将沿短期EXPMA移动,价格反复得最高点将位于长期EXPMA附近。 4.当股价在一个多头趋势中跌破短期EXPMA,必将向长期EXPMA靠拢,而长期EXPMA将对股价走势起到较强得支撑作用,当股价跌破长期EXPMA时,往往是绝好得买入时机;相反地,当股价在一个空头趋势中突破短期EXPMA后,将有进一步向长期EXPMA冲刺得希望,而长期EXPMA将对股价走势起到明显得阻力作用,当股价突破长期EXPMA后,往往会形成一次回抽确认,而且第一次突破失败得机率较大,因此应视为一次绝好得卖出时机。 5.股价对于长期EXPMA得突破次数越多越表明突破有效。一般来说,长期EXPMA被价格突破之后,需要两到三个交易日得时间来确认突破得有效性。 6.当股价在一个多头趋势中跌破短期EXPMA,并继而跌破长期EXPMA,而且使得短期EXPMA开始转头向下运行,甚至跌破长期EXPMA,此时意味着多头趋势发生变化,应作止蚀处理;相反地,当股价在一个空头趋势中突破短期EXPMA,并继而突破长期EXPMA,而且使得短期EXPMA开始转头向上运行,甚至突破长期EXPMA,此时意味着空头趋势已经改变成多头趋势,应作补仓处理。 7.当短期EXPMA向上交叉长期EXPMA时,股价会先形成一个短暂得高点,然后微幅回档至长期EXPMA附近,此时为最佳买入点;当短期EXPMA向下交叉长期EXPMA时,股价会先形成一个短暂得低点,然后微幅反弹至长期EXPMA附近,此时为最佳卖出点。 注意要点 1.关于EXPMA指标得其他使用原则,可根据不同基期得指数参数设置来进一步总结。在目前众多得技术分析软件中,EXPMA指标参数默认为[12,50],客观讲有较高得使用价值。而经过技术分析人士得研究,发现[6,35]与[10,60]有更好得实战效果。 2.EXPMA指标比较适合与SAR指标配合使用。 图形特征 1. EXPMA指标由EXPMA1[白线]和EXPMA2[黄线]组成,当白线由下往上穿越黄线时,股价随后通常会不断上升,那么这两根线形成金叉之日便是买入良机。 2. 当一只个股得股价远离白线后,该股得股价随后很快便会回落,然后再沿着白线上移,可见白线是 3. 同理,当白线由上往下击穿黄线时,股价往往已经发生转势,日后将会以下跌为主,则这两根线得交叉之日便是卖出时机。 市场意义 1. 该指标一般为中短线选股指标,比较符合以中短线为主得投资者,据此信号买入者均有获利机会,但对中线投资者来说,其参考意义似乎更大,主要是因为该指标稳定性大,波动性小。 2. 若白线和黄线始终保持距离地上行,则说明该股后市将继续看好,每次股价回落至白线附近,只要不击穿黄线,则这种回落现象便是良好得买入时机。 (3)对于卖出时机而言,个人认为还是不要以EXPMA指标形成死叉为根据,因为该脂标有一定得滞后性,可以超级短线指标为依据,一旦某只个股形成死叉时,则是中线离场信号。区别和联系联系 平均数、中位数和众数都是来刻画数据平均水平的统计量,它们各有特点。对于平均数大家比较熟悉,中位数刻画了一组数据的中等水平,众数刻画了一组数据中出现次数最多的情况。 平均数非常明显的优点之一是,它能够利用所有数据的特征,而且比较好算。另外,在数学上,平均数是使误差平方和达到最小的统计量,也就是说利用平均数代表数据,可以使二次损失最小。因此,平均数在数学中是一个常用的统计量。但是平均数也有不足之处,正是因为它利用了所有数据的信息,平均数容易受极端数据的影响。例如,在一个单位里,如果经理和副经理工资特别高,就会使得这个单位所有成员工资的平均水平也表现得很高,但事实上,除去经理和副经理之外,剩余所有人的平均工资并不是很高。这时,中位数和众数可能是刻画这个单位所有人员工资平均水平更合理的统计量。中位数和众数这两个统计量的特点都是能够避免极端数据,但缺点是没有完全利用数据所反映出来的信息。由于各个统计量有各自的特征,所以需要我们根据实际问题来选择合适的统计量。 当然,出现极端数据不一定用中位数,一般,统计上有一个方法,就要认为这个数据不是来源于这个总体的,因而把这个数据去掉。比如大家熟悉的跳水比赛评分,为什么要去掉一个最高分、一个最低分呢,就认为这两个分不是来源于这个总体,不能代表裁判的鉴赏力。于是去掉以后再求剩下数据的平均数。需要指出的是,我们现在处理的数据,大部分是对称的数据,数据符合或者近似符合正态分布。这时候,均值(平均数)、中位数和众数是一样的。区别 只有在数据分布偏态(不对称)的情况下,才会出现均值、中位数和众数的区别。所以说,如果是正态的话,用哪个统计量都行。如果偏态的情况特别严重的话,可以用中位数。 除了需要刻画平均水平的统计量,统计中还有刻画数据波动情况的统计量。比如,平均数同样是5,它所代表的数据可能是1、3、5、7、9,可能是4、4.5、5、5.5、6。也就是说5所代表的不同组数据的波动情况是不一样的。怎样刻画数据的波动情况呢?很自然的想法就是用最大值减最小值,即求一组数据的极差。数学中还有方差、标准差等许多用来刻画数据特征的统计量。当然这些都是教师感兴趣、值得了解的内容,不是小学数学的教学要求。
平均指标 平均指标可以是同一时间的同类社会经济现象的一般水平,称为静态平均数,也可以是不同时间的同类社会经济现象的一般水平,称为动态平均数。平均指标的意义和作用 平均指标在认识社会经济现象总体数量特征方面有重要作用,得到广泛应用。 1、平均指标可以反映现象总体的综合特征。 2、平均指标可以反映分配数列中各变量值分布的集中趋势。 3、平均指标经常用来进行同类现象在不同空间、不同时间条件下的对比分析,从而反映现象在不同地区之间的差异,揭示现象在不同时间之间的发展趋势。平均指标的种类 平均指标按计算和确定的方法不同,分为算术平均数、调和平均数、几何平均数、众数和中位数。前三种平均数是根据总体各单位的标志值计算得到的平均值,称作数值平均数。众数和中位数是根据标志值在分配数列中的位置确定的,称为位置平均数。 1.算术平均数 算术平均数也成均值,是最常用的平均指标。它的基本公式形式是总体标志总量除以总体单位总量。在实际工作中,由于资料的不同,算术平均数有两种计算形式:即简单算术平均数和加权算术平均数。 ⑴简单算术平均数适用于未分组的统计资料,如果已知各单位标志值和总体单位数,可采用简单算术平均数方法计算。 ⑵加权算术平均数适用于分组的统计资料,如果已知各组的变量值和变量值出现的次数,则可采用加权算术平均数计算。 加权算术平均数的大小受两个因素的影响:其一是受变量值大小的影响。其二是各组次数占总次数比重的影响。在计算平均数时,由于出现次数多的标志值对平均数的形成影响大些,出现次数少的标志值对平均数的形成影响小些,因此就把次数称为权数。在分组数列的条件下,当各组标志值出现的次数或各组次数所占比重均相等时,权数就失去了权衡轻重的作用,这时用加权算术平均数计算的结果与用简单算术平均数计算的结果相同。 2.调和平均数 调和平均数是总体各单位标志值倒数的算术平均数的倒数,又称为倒数平均数,由简单调和平均数和加权调和平均数。 3.几何平均数 几何平均数是n个变量值乘积的n次方根。在统计中,几何平均数常用于计算平均速度和平均比率。几何平均数也有简单平均和加权平均两种形式。 4.众数 众数是指总体中出现次数最多的标志值。众数也是一种位置平均数。在实际工作中往往可以代表现象的一般水平,如市场上某种商品大多数的成交价格,多数人的服装和鞋帽尺寸等,都是众数。但只有在总体单位数多且有明显的集中趋势时,才可计算众数。 5.中位数 将总体各单位的标志治安大小顺序排列,处于中间位置的标志值就是中位数。由于中位数是位置平均数,不受极端值的影响,在总体标志值差异很大的情况下,中位数具有很强的代表性。应用平均指标应注意的问题 1、计算和应用平均指标必须注意现象总体的同质性。 2、用组平均数补充说明平均数。 3、计算和运用平均数时,要注意极端数值的影响。 4、在运用平均数分析时还应注意用分配数列补充说明平均数。 5、把平均数与典型事例相结合。
平均差 average deviation或mean deviation 用A.D.或M.D.表示。 平均差是总体所有单位的平均值与其算术平均数的离差绝对值的算术平均数。 平均差是一种平均离差。离差是总体各单位的标志值与算术平均数之差。因离差和为零,离差的平均数不能将离差和除以离差的个数求得,而必须讲离差取绝对数来消除正负号。 平均差是反应各标志值与算术平均数之间的平均差异。平均差异大,表明各标志值与算术平均数的差异程度越大,该算术平均数的代表性就越小;平均差越小,表明各标志值与算术平均数的差异程度越小,该算术平均数的代表性就越大。 平均差的计算 在资料未分组的情况下,平均差的计算公式为: 1、普通平均差计算: 2、加权平均差计算:
将不同时间的发展水平加以平均而得到的平均数叫做平均发展水平。
释义 各单次测量偏差的绝对值之和与测量次数之比,用d表示.公式举例说明: 假设某标准值为5,一共测量5次,测量数值分别为6,5.5,4,5,4.5,则偏差分别为1,0.5,-1,0,-0.5,则平均偏差为0.6。意义 由于平均值反应了测定数据的集中趋势,因此各测定值与与平均值之间之差也就体现了精密度的高低。精密度的高低取决于随机误差的大小,通常用偏差量度。 适用于数据整理,数据分析。