按照数量标志分组形式的分布数列称为变量分布数列,简称变量数列。 变量数列根据变量标志的特征的不同分为离散变量数列和连续变量数列。 连续变量数列根据分组变量在各组取值形式的不同,变量数列可分为单项式分布数列和组距式分布数列。
变量用于开放句子,表示尚未清楚的值(即变数),或一个可代入的值(见函数)。这些变量通常用一个英文字母表示,若用了多于一个英文字母,很易令人混淆成两个变量相乘。n,m,x,y,z是常见的变量名字,其中n,m较常表示整数。
(离中量数) 表示团体中各分数之分散情形的统计数,即用来表示个别差异大小的指标.
变异系数又称“标准差率”,是衡量资料中各观测值变异程度的另一个统计量。当进行两个或多个资料变异程度的比较时,如果度量单位与平均数相同,可以直接利用标准差来比较。如果单位和(或)平均数不同时,比较其变异程度就不能采用标准差,而需采用标准差与平均数的比值(相对值)来比较。 标准差与平均数的比值称为变异系数,记为C.V。变异系数可以消除单位和(或)平均数不同对两个或多个资料变异程度比较的影响。 标准变异系数是一组数据的变异指标与其平均指标之比,它是一个相对变异指标。 变异系数有全距系数、平均差系数和标准差系数等。常用的是标准差系数,用CV(Coefficient of Variance)表示。 CV(Coefficient of Variance):标准差与均值的比率。 用公式表示为:CV=σ/μ 作用:反映单位均值上的离散程度,常用在两个总体均值不等的离散程度的比较上。若两个总体的均值相等,则比较标准差系数与比较标准差是等价的。 变异系数又称离散系数。 cpa中也叫“变化系数”
定义 用来比较多个母群平均数间差异显著性的一种统计分析方法. 用来分析多个群体中的计量型数据,以便比较变异的意义和分析其来源。 变异数分析,ANOVA(ANalysis Of Variance),又称方差分析目录 1 什么是方差分析(变异数分析) 2 方差分析(变异数分析)的基本思想 3 方差分析(变异数分析)的应用条件 4 方差分析(变异数分析)的主要内容 什么是方差分析 方差分析(ANOVA)又称“变异数分析”或“F检验”,是R.A.Fister发明的,用于两个及两个以上样本均数差别的显著性检验。 由于各种因素的影响,研究所得的数据呈现波动状。造成波动的原因可分成两类,一是不可控的随机因素,另一是研究中施加的对结果形成影响的可控因素。 一个复杂的事物,其中往往有许多因素互相制约又互相依存。方差分析的目的是通过数据分析找出对该事物有显著影响的因素,各因素之间的交互作用,以及显著影响因素的最佳水平等。方差分析是在可比较的数组中,把数据间的总的“变差”按各指定的变差来源进行分解的一种技术。对变差的度量,采用离差平方和。方差分析方法就是从总离差平方和分解出可追溯到指定来源的部分离差平方和,这是一个很重要的思想。 经过方差分析若拒绝了检验假设,只能说明多个样本总体均数不相等或不全相等。若要得到各组均数间更详细的信息,应在方差分析的基础上进行多个样本均数的两两比较。 1、多个样本均数间两两比较 多个样本均数间两两比较常用q检验的方法,即Newman-kueuls法,其基本步骤为:建立检验假设-->样本均数排序-->计算q值-->查q界值表判断结果。 2、多个实验组与一个对照组均数间两两比较 多个实验组与一个对照组均数间两两比较,若目的是减小第II类错误,最好选用最小显著差法(LSD法);若目的是减小第I类错误,最好选用新复极差法,前者查t界值表,后者查q'界值表。方差分析的基本思想 基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。 下面我们用一个简单的例子来说明方差分析的基本思想: 如某克山病区测得11例克山病患者和13名健康人的血磷值(mmol/L)如下: 患者:0.84 1.05 1.20 1.20 1.39 1.53 1.67 1.80 1.87 2.07 2.11 健康人:0.54 0.64 0.64 0.75 0.76 0.81 1.16 1.20 1.34 1.35 1.48 1.56 1.87 问该地克山病患者与健康人的血磷值是否不同? 从以上资料可以看出,24个患者与健康人的血磷值各不相同,如果用离均差平方和(SS)描述其围绕总均数的变异情况,则总变异有以下两个来源: 组内变异,即由于随机误差的原因使得各组内部的血磷值各不相等; 组间变异,即由于克山病的影响使得患者与健康人组的血磷值均数大小不等。 而且:SS总=SS组间+SS组内 v总=v组间+v组内 如果用均方(即自由度v去除离均差平方和的商)代替离均差平方和以消除各组样本数不同的影响,则方差分析就是用组内均方去除组间均方的商(即F值)与1相比较,若F值接近1,则说明各组均数间的差异没有统计学意义,若F值远大于1,则说明各组均数间的差异有统计学意义。实际应用中检验假设成立条件下F值大于特定值的概率可通过查阅F界值表(方差分析用)获得。 [编辑]方差分析的应用条件 应用方差分析对资料进行统计推断之前应注意其使用条件,包括: 1、可比性。若资料中各组均数本身不具可比性则不适用方差分析。 2、正态性。即偏态分布资料不适用方差分析。对偏态分布的资料应考虑用对数变换、平方根变换、倒数变换、平方根反正弦变换等变量变换方法变为正态或接近正态后再进行方差分析。 3、方差齐性。即若组间方差不齐则不适用方差分析。多个方差的齐性检验可用Bartlett法,它用卡方值作为检验统计量,结果判断需查阅卡方界值表。方差分析主要用于 1、均数差别的显著性检验; 2、分离各有关因素并估计其对总变异的作用; 3、分析因素间的交互作用; 4、方差齐性检验。方差分析的主要内容 根据资料设计类型的不同,有以下两种方差分析的方法: 1、对成组设计的多个样本均数比较,应采用完全随机设计的方差分析,即单因素方差分析。 2、对随机区组设计的多个样本均数比较,应采用配伍组设计的方差分析,即两因素方差分析。 两类方差分析的基本步骤相同,只是变异的分解方式不同,对成组设计的资料,总变异分解为组内变异和组间变异(随机误差),即:SS总=SS组间+SS组内,而对配伍组设计的资料,总变异除了分解为处理组变异和随机误差外还包括配伍组变异,即:SS总=SS处理+SS配伍+SS误差。整个方差分析的基本步骤如下: 1、建立检验假设; H0:多个样本总体均数相等; H1:多个样本总体均数不相等或不全等。 检验水准为0.05。 2、计算检验统计量F值; 3、确定P值并作出推断结果。
原始资料平均法又称“同期平均法”、“按月(或季)平均法”,是在现象不存在长期趋势或长期趋势不明显的情况下,测定季节变动的一种最基本的方法。 它的基本思想和长期趋势测定中的移动平均法的思想是相同的。实际上,“同期平均法”就是一种特殊的“移动平均法”,即:一方面它是平均;另一方面,这种平均的范围是仅仅局限在不同年份的相同季节中,季节不同,平均数的范围也就随之而“移动”。因此所谓“同期平均”就是在同季(月)内“平均”,而在不同季(月)之间“移动”的一种“移动平均”法。“平均”是为了消除非季节因素的影响,而“移动”则是为了测定季节因素的影响程度。原始资料平均法的步骤 同期平均法来测定其季节变动。步骤如下: 第一,计算各年同季(月)的平均数,目的是要消除非季节因素的影响。道理很简单,因为同样是旺季或者淡季,有些年份的旺季更旺或更淡,这就是非季节因素的影响。因为我们假设没有长期趋势,因此,这些因素通过平均的方法就可以相互抵消。 第二,计算各年同季(或同月)平均数的平均数,也即时间数列的序时平均数,目的是计算季节比率。因为就从测定季节变动的目的讲,只计算“异年同季的平均数”已经可以反映现象的季节变动趋势了:平均数大,表明是旺季,越大越旺;平均数小,表明是淡季,越小越淡。但是,这种大与小、淡与旺的程度只能和其它季节相比才能有个准确的认识,因此,就需要将“各年同季的平均数”进行相对化变换,即计算季节比率,对比的标准就应该是时间数列的序时平均数。 第三,计算季节比率。方法是将各年同季的平均数分别和时间数列的序时平均数进行对比。一般用百分数表示,用公式表示为: 季节指数(S)=同月(或季)平均数/总月(或季)平均数×100% [例]某服装公司2002—2004年各月销售量资料如下表,试用按月(或季)平均法计算各月的季节指数。 月份各年销售量(万件)各年销售量(万件)各年销售量(万件) 合计 同月平均 季节比率(%)2002 (1)2003 (2) 2004 (3) (4)=(1)+(2)+(3)(5)=(4) ÷(3) (6)=(5)÷ 1260.56 1月 2月 3月 4月 5月 6月 7月 8月 9月 10月 11月 12月80 120 200 500 800 2500 2400 600 200 100 60 40120 200 350 850 1500 4500 6400 900 400 250 100 80320 400 700 1500 2400 6800 7200 1500 600 400 200 110520 720 1250 2850 4700 13800 16000 3000 1200 750 360 230173.3 240 416.7 950 1566.7 4600 5333.3 1000 400 250 120 76.713.8 19.0 33.1 75.4 124.3 364.9 423.1 79.3 31.7 19.8 9.5 6.1合计 平均 7600 633.315650 1304.222130 1844.2 45380 3781.67 45380 3781.671200 100 表1中的季节指数一栏,是以指数形式表现的典型销售量。每个指数代表2002—2004年间每个月份的平均销售量。比如,一月份的季节指数为13.8%,表示该月份销售量为全年平均销售量的13.8%,而全年平均销售量则作为100%。这样从各月的季节指数序列,可以清楚地表明该服装公司销售量的季节变动趋势。即1、2、3、4月份是销售淡季,5、6、7为销售旺季,7月份比全年平均销售量高323.1%(432.1-100%),8月份开始下降,到12月份降到最低点,比全年平均销售量低93.9%(6.1%-100%)。 同期平均法计算简单,易于理解。应用该方法的基本假定是:原时间序列没有明显的长期趋势和循环波动,因而,通过若干年同期数值的平均,不仅可以消除不规则波动,而且当平均的周期与循环周期一致时,循环波动也可以在平均过程中得以消除,但实际上,许多时间序列所包含的长期趋势和循环波动,很少能够通过平均予以消除。因此,当时间序列存在明显的长期趋势时,该方法的季节指数不够准确。当存在剧烈的上升趋势时,年末季节指数明显高于年初的季节指数;当存在下降趋势时,年末的季节指数明显低于年初的季节指数。只有当序列的长期趋势和循环波动不明显或影响不重要,可忽略不计时,应用该方法比较合适。
一 什么是原始实物量 一般统计学上对企业产品的产出进行统计时,通常使用三种计量方式: 实物量、劳动量和价值量.实物量是以实物单位计量的产品产量,分为原始实物量和标准实物量.原始实物量又称为产品的混合量,是指各类产品按其自然物理量为单位的产量. 二 原始实物量统计的基本原则 在统计原始实物量时,遵循如下基本原则: (1) 必须符合规定的产品质量标准 , (2) 必须是本期生产的产品 , (3) 必须严格按照产品目录的规定统计.
根据原始记录或统计台帐的资料汇总编制的。